
Optimizing	


Performance	


how to make your Eclipse-
based tools run faster	



Martin Lippert	


Principal Software Engineer - Pivotal	



mlippert@gopivotal.com	


@martinlippert

mailto:mlippert@gopivotal.com


Every developer benefits 
from better performance



Find out where the problem is...

failblog.com



Measure !!!



VisualVM 
!

Free	


Easy to use	



comes as part of the JDK	


extremely useful to capture data remotely



YourKit 
used for comprehensive analysis	



various options and ways to track down issues	


$$$	


!

!
alternative:	


JProfiler 

$$$	





the case



trivial: expensive calls inside loops



findFilesForLocationURI(..) is slow

step 1: fix this in the Eclipse platform



findFilesForLocationURI(..) is slow

step 2: cache results if that makes sense



findFilesForLocationURI(..) is slow

step 3: if you can‘t avoid massive use of this,  
optimize for the most likely case



Build workspace (16%)...

why is the build taking	


soooooo long... ???



Build workspace (16%)...



Build workspace (16%)...

what is exactly going on under the hood?

taken from a different case



Build workspace (16%)...

what is exactly going on under the hood?

• the Spring-specific builder: sloooooow...

taken from a different case



Build workspace (16%)...

what is exactly going on under the hood?

• the WTP JS builder: slooooow...

• the Maven project builder: slooooow...

• the Spring-specific builder: sloooooow...

taken from a different case



Build workspace (16%)...

what is exactly going on under the hood?

• the core implementation is ultra fast (compiling 
Java, for example, but also reconciling, invoking 
content assist, etc.)

• the WTP JS builder: slooooow...

• the Maven project builder: slooooow...

• the Spring-specific builder: sloooooow...

taken from a different case



But wait a moment...



what is this ?!?But wait a moment...



Action 1: Configure your Eclipse wisely

-Xmx768m 
!

!

!

-Xmx1024m

30min 
!

!

!

~7min

max heap size build workspace



Action 2: Reduce garbage 
and memory usage in general

• String.format creates a lot of garbage 	


• called many many times 	


• most of the time with exactly one argument



Action 2: Reduce garbage 
and memory usage in general


 public Set<IBean> getBeans() {


 
 Set<IBean> allBeans = new LinkedHashSet<IBean>(beans.values());


 
 for (IBeansImport beansImport : imports) {


 
 
 for (IBeansConfig bc : beansImport.getImportedBeansConfigs()) {


 
 
 
 allBeans.addAll(bc.getBeans());


 
 
 }


 
 }


 
 return Collections.unmodifiableSet(allBeans);


 }



Action 2: Reduce garbage 
and memory usage in general


 public Set<IBean> getBeans() {


 
 Set<IBean> allBeans = new LinkedHashSet<IBean>(beans.values());


 
 for (IBeansImport beansImport : imports) {


 
 
 for (IBeansConfig bc : beansImport.getImportedBeansConfigs()) {


 
 
 
 allBeans.addAll(bc.getBeans());


 
 
 }


 
 }


 
 return Collections.unmodifiableSet(allBeans);


 }

new set with copied content

recursive call

• imagine this is called with deep recursion 
• but since the method looks quite innocent, it is called 

many times while doing the build



Now back to the details of this…

• the Spring-specific builder: sloooooow...



O(n) 
matters for scalability




 class ResourceDeltaVisitor implements IResourceDeltaVisitor {

!

 
 public boolean visit(IResourceDelta aDelta) throws CoreException {


 
 
 IResource resource = aDelta.getResource();


 
 
 if (resource instanceof IFile) {


 
 
 
 checkResource(resource);


 
 
 }


 
 
 return true;


 
 }


 }

watch out for visitors




 class ResourceDeltaVisitor implements IResourceDeltaVisitor {

!

 
 public boolean visit(IResourceDelta aDelta) throws CoreException {


 
 
 IResource resource = aDelta.getResource();


 
 
 if (resource instanceof IFile) {


 
 
 
 checkResource(resource);


 
 
 }


 
 
 return true;


 
 }


 }

• this might be called many many times	


• take care to make this simple and fast	


• not allowed to iterate over collections

watch out for visitors




 class ResourceDeltaVisitor implements IResourceDeltaVisitor {

!

 
 public boolean visit(IResourceDelta aDelta) throws CoreException {


 
 
 IResource resource = aDelta.getResource();


 
 
 if (resource instanceof IFile) {


 
 
 
 checkResource(resource);


 
 
 }


 
 
 return true;


 
 }


 }

• this might be called many many times	


• take care to make this simple and fast	


• not allowed to iterate over collections

• in our case: 
• takes a look at individual IResource objects 
• identify the defined types 
• iterate over all defined beans and check for type 

dependency

watch out for visitors



the case: type checks


 Set<IType> typesToCheck = new HashSet<IType>();

!

 IType[] types = cu.getAllTypes();


 for (IType type : types) {


 
 IType[] subTypes = type.newTypeHierarchy(monitor).getAllSubtypes(type);


 
 if (subTypes != null && subTypes.length > 0) {


 
 
 typesToCheck.addAll(Arrays.asList(subTypes));


 
 }


 }

!
!

loop over beans and check each bean type whether it is contained in 
typesToCheck



the case: type checks


 Set<IType> typesToCheck = new HashSet<IType>();

!

 IType[] types = cu.getAllTypes();


 for (IType type : types) {


 
 IType[] subTypes = type.newTypeHierarchy(monitor).getAllSubtypes(type);


 
 if (subTypes != null && subTypes.length > 0) {


 
 
 typesToCheck.addAll(Arrays.asList(subTypes));


 
 }


 }

!
!

loop over beans and check each bean type whether it is contained in 
typesToCheck

• asking a type for its hierarchy is slow	


• cached, but only for a limited number of hierarchies	


• doing this for all resources of a build can take a very long time



instead: 
we built our own type hierarchy engine

TypeHierarchyEngine 
it reads bytecode (only type information)	



it walks up the super classes and interfaces	


it caches already loaded type information



instead: 
we built our own type hierarchy engine

TypeHierarchyEngine 
it reads bytecode (only type information)	



it walks up the super classes and interfaces	


it caches already loaded type information

Lessons Learned 
reading bytecode is super super fast	



finding the bytecode on the classpath is super slow



What is designed to be fast?

Reconciling 
Be extremely careful when implementing a 

reconcile participant	


!

Content-Assist 
Has to be fast	



Don‘t do anything if its not your job	


!

...



Startup time is important 
(even if you start Eclipse just once a day)	



!

!

Don‘t start 
all your bundles and do stuff at startup	



!

Do caching 
(Equinox Weaving, for example)	



!

Uninstall bundles 
to get rid of things you don‘t need



Proposal mock-up – not an actual program

A different approach

from Chris Laffras talk on Eclipse performance



1.Measure 
2.Optimize 
!

3.Goto 1.



Martin Lippert	


Principal Software Engineer - Pivotal	



mlippert@gopivotal.com	


@martinlippert

Q&A 
!

and thank you for your attention

mailto:mlippert@gopivotal.com

